INTERIOR ERROR ESTIMATE FOR PERIODIC HOMOGENIZATION

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interior error estimate for periodic homogenization

In a previous article about the homogenization of the classical problem of diffusion in a bounded domain with sufficiently smooth boundary we proved that the error is of order ε. Now, for an open set Ω with sufficiently smooth boundary (C) and homogeneous Dirichlet or Neuman limits conditions we show that in any open set strongly included in Ω the error is of order ε. If the open set Ω⊂R is of ...

متن کامل

Error estimate and unfolding for periodic homogenization

This paper deals with the error estimate in problems of periodic homogenization. The methods used are those of the periodic unfolding. We give the upper bound of the distance between the unfolded gradient of a function belonging to H(Ω) and the space ∇xH(Ω)⊕∇yL(Ω;H per(Y )). These distances are obtained thanks to a technical result presented in Theorem 2.3 : the periodic defect of a harmonic fu...

متن کامل

Error estimates for periodic homogenization with non-smooth coefficients

In this paper we present new results regarding the H1 0 -norm error estimate for the classical problem in homogenization using suitable boundary layer correctors. Compared with all the existing results on the subject, which assume either smooth enough coefficients or smooth data, we use the periodic unfolding method and propose a new asymptotic series to approximate the solution uε with an erro...

متن کامل

Periodic Homogenization for Hypoelliptic Diffusions

Abstract We study the long time behavior of an Ornstein–Uhlenbeck process under the influence of a periodic drift. We prove that, under the standard diffusive rescaling, the law of the particle position converges weakly to the law of a Brownian motion whose covariance can be expressed in terms of the solution of a Poisson equation. We also derive upper bounds on the convergence rate in several ...

متن کامل

Kinetic Decomposition for Periodic Homogenization Problems

Abstract. We develop an analytical tool which is adept for detecting shapes of oscillatory functions, is useful in decomposing homogenization problems into limit-problems for kinetic equations, and provides an efficient framework for the validation of multi-scale asymptotic expansions. We apply it first to a hyperbolic homogenization problem and transform it to a hyperbolic limit problem for a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Analysis and Applications

سال: 2006

ISSN: 0219-5305,1793-6861

DOI: 10.1142/s021953050600070x